대구한의대학교 향산도서관

상세정보

부가기능

The Role of Consistent Turbulence Energetics in the Representation of Dry and Shallow Convection

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항The Role of Consistent Turbulence Energetics in the Representation of Dry and Shallow Convection.
개인저자New, David Andrew.
단체저자명University of Maryland, College Park. Atmospheric and Oceanic Sciences.
발행사항[S.l.]: University of Maryland, College Park., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항126 p.
기본자료 저록Dissertations Abstracts International 81-05B.
Dissertation Abstract International
ISBN9781687913173
학위논문주기Thesis (Ph.D.)--University of Maryland, College Park, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-05, Section: B.
Advisor: Liang, Xin-Zhong.
이용제한사항This item must not be sold to any third party vendors.
요약In this doctoral dissertation, the role of consistent turbulence energetics is examined in the context of sub-grid turbulence, convection, and cloud condensation parameterizations for numerical weather and climate models. The property of energetic consistency is formally defined and divided into two categories, local and non-local, and various common parameterization approaches are classified according this framework. I show theoretically that the basis of local energetic consistency is the inclusion of mean-gradient transport and buoyancy acceleration terms in the diagnostic and prognostic budget equations of all second-order statistical moments, including fluxes. Effectively, these terms account for the conversion between turbulent kinetic energy (TKE) and turbulent potential energy (TPE) under stably stratified conditions. With simple numerical experiments, I show that if local energetic consistency is not satisfied, then thermodynamic profiles cannot be correctly predicted under stably conditions, such as in the boundary layer capping inversion. I then extend the concept of energetic consistency from local turbulent mixing to non-local convective transport. I show that the popular eddy diffusivity-mass flux (EDMF) approach for unified parameterization of turbulence and convection treats the turbulent transport of turbulent energy in two parallel but inconsistent ways: advectively and diffusively. I introduce a novel parameterization approach, inspired by EDMF, that consistently partitions all second-order moments, including TKE, between convective and non-convective parts of a grid cell and show that this approach predicts significantly more realistic depths of convective boundary layers than conventional EDMF schemes. Finally, I introduce a novel method for validating this parameterization approach, based on Langragian particle tracking in large-eddy simulations.
일반주제명Atmospheric sciences.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼