대구한의대학교 향산도서관

상세정보

부가기능

Meiotic Crossover Patterning in Drosophila melanogaster

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Meiotic Crossover Patterning in Drosophila melanogaster.
개인저자Hartmann, Michaelyn Ann.
단체저자명The University of North Carolina at Chapel Hill. Genetics and Molecular Biology.
발행사항[S.l.]: The University of North Carolina at Chapel Hill., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항142 p.
기본자료 저록Dissertations Abstracts International 81-03B.
Dissertation Abstract International
ISBN9781085753234
학위논문주기Thesis (Ph.D.)--The University of North Carolina at Chapel Hill, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-03, Section: B.
Advisor: Sekelsky, Jeff
이용제한사항This item must not be sold to any third party vendors.
요약Meiosis is an essential process to halve an organism's genome in preparation for transmission to the next generation. Recombination between homologous chromosomes is necessary for the proper segregation of chromosomes, and allows the generation of genetic diversity. Mistakes in meiosis can lead to aneuploidy, therefore, to minimize mistakes, recombination is a highly regulated process. Crossovers are patterned along a chromosome, and this patterning is dictated by three phenomena known as interference, assurance, and the centromere effect. Interference assures that a crossover does not occur too close to another crossover, assurance maintains that each chromosome gets at least one crossover, and the centromere effect suppresses crossovers that occur too close to the centromere. The work detailed in this dissertation first focuses on the proteins involved in crossover formation and then investigates the regulation of the suppression of centromere-proximal crossovers. I have gained insight into a potential endonuclease, Ankle1, as well as further elucidated the role of the mei-MCM complex in creating meiotic crossovers. In addition, I discovered that centromere-proximal crossover suppression is regulated both by the highly-repetitive heterochromatin adjacent to the centromere, as well as the protein-mediated centromere effect, which extends into the euchromatin and dissipates with distance from the centromere. Overall these findings have provided insight into the mechanisms of crossover formation and patterning and provided the foundation for future studies of meiotic crossover control.
일반주제명Genetics.
Cellular biology.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼