대구한의대학교 향산도서관

상세정보

부가기능

Evaluating and Improving Computational Models for Physical Property Predictions

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Evaluating and Improving Computational Models for Physical Property Predictions.
개인저자Bannan, Caitlin C.
단체저자명University of California, Irvine. Chemistry - Ph.D..
발행사항[S.l.]: University of California, Irvine., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항326 p.
기본자료 저록Dissertations Abstracts International 81-03B.
Dissertation Abstract International
ISBN9781085785129
학위논문주기Thesis (Ph.D.)--University of California, Irvine, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-03, Section: B.
Advisor: Mobley, David L.
이용제한사항This item must not be sold to any third party vendors.
요약Simulations allow us to predict free energies and physical properties of molecules in advance of their synthesis saving time and resources. My research focuses on how to automatically evaluate and improve these predictions. I begin by describing my work to test the accuracy of free energy calculations by computing various partition coefficients. Then, I report on applications of the resulting procedure in the SAMPL5 blind challenge for 53 small drug-like molecules. Comparing computed and experimental values highlighted three areas which still need improvement: conformational sampling, protonation assignment, and force field accuracy. These results motivated my next project, designing a Gaussian process model for pKa prediction based on computed properties of small molecules. I tested this model in the SAMPL6 blind challenge on pKa prediction where it performed competitively with many established methods. My partition coefficient results also highlighted the limitations of current force fields-used to calculate potential energy of a system based on atomic coordinates. To address these concerns, I joined the the Open Force Field Initiative, a collaboration working to automate force field parametrization. The culmination of my Ph.D. focuses on generating chemical perception-the way a force field assigns parameters to a molecule-without the historically required human intuition. Improved force fields will result in more accurate predictive models and a better understanding of a wide variety of fields including computer-aided drug design, biomaterials, and polymer chemistry.
일반주제명Chemistry.
Physical chemistry.
Pharmaceutical sciences.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼