대구한의대학교 향산도서관

상세정보

부가기능

Theoretical and Computational Contributions to the Modeling of Global Tsunamis

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Theoretical and Computational Contributions to the Modeling of Global Tsunamis.
개인저자Salaree, Amirmahmood.
단체저자명Northwestern University. Earth and Planetary Sciences.
발행사항[S.l.]: Northwestern University., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항360 p.
기본자료 저록Dissertations Abstracts International 81-02B.
Dissertation Abstract International
ISBN9781085624251
학위논문주기Thesis (Ph.D.)--Northwestern University, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-02, Section: B.
Advisor: Okal, Emile A.
이용제한사항This item must not be sold to any third party vendors.This item must not be added to any third party search indexes.
요약I. The distribution of tsunami amplitudes in the open ocean is controlled by source mechanism and bathymetry geometry. Although detailed studies have considered heterogeneity effects in earthquake tsunami sources, little or no attention has been paid to the effects of physical resolution of detailed bathymetry on tsunami waveforms in the far field.Regardless of the simulation method, on one hand, it is desirable to include detailed bathymetry features in the simulation grids in order to predict tsunami amplitudes as accurately as possible, but on the other hand, large detailed grids result in long simulation times. It is therefore of interest to investigate the amount of detail in bathymetric grids that control the most important features in tsunami amplitudes, to assess what constitutes sufficient level for grids in numerical simulations.In this context, we consider the real bathymetry of the Pacific basin and use two different smoothing techniques to decrease the physical resolution of the propagation medium. First, we use a spherical harmonics series approach to decompose the bathymetry of the Pacific Ocean into its components down to a resolution of 4째 (l=100) and create bathymetric grids by summing the resulting terms.Secondly, we use a moving average technique and quantify smoothness by assigning a maximum self-similarity threshold. We then use these grids to simulate the tsunami behavior from pure thrust events of different sizes around the Pacific using the MOST algorithm.Application of four different metrics, namely MT (Metric Tsunami), correlation coefficient, frequency domain analysis, and entropy reveal that for large megathrust events (M0=1029 dyn-cm), one only needs to consider the sum of the first ~20 coefficients (equivalent to a resolution of ~2000 km, or ~1% surface smoothness of the Pacific grid, in order to reproduce the main components of the true distribution of tsunami amplitudes. This would result in simpler simulations, and faster computations in the context of tsunami warning algorithms.II. We study individual tsunamis of landslide or atmospheric origin, through extensive field surveys and numerical modeling, to unravel the exact mechanism of their generation.In the Caspian Sea (1990) and in the case of an aftershock of the 1923 Kamchatka earthquake, we document generation from seismically triggered landslides, with significant implications in terms of tsunami hazard for these provinces. In the Persian Gulf, we attribute the 2017 Dayyer rogue wave to a meteotsunami presumably correlated with a large scale atmospheric disturbance.Although these non-tectonic events occurred on much smaller scales compared to earthquake tsunamis, we investigate their respective source mechanisms and propagation patterns by compiling appropriate geological/morphological datasets in order to better constrain their modeling as hydrodynamic events. In this respect, we will also be able to quantify the tsunami hazard of thevarious basins in which these events took place.
일반주제명Geophysics.
Geology.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼