대구한의대학교 향산도서관

상세정보

부가기능

Continuum Modeling of Cell-extracellular Environment Interaction

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Continuum Modeling of Cell-extracellular Environment Interaction.
개인저자Cao, Xuan.
단체저자명University of Pennsylvania. Materials Science and Engineering.
발행사항[S.l.]: University of Pennsylvania., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항193 p.
기본자료 저록Dissertations Abstracts International 81-04B.
Dissertation Abstract International
ISBN9781088343036
학위논문주기Thesis (Ph.D.)--University of Pennsylvania, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Advisor: Shenoy, Vivek B.
이용제한사항This item must not be sold to any third party vendors.
요약To perform functions such as proliferation, differentiation, and locomotion, living cells establish stable attachments to the extracellular matrix (ECM) via the formation of specialized receptor mediated contact foci, through which they sense the mechanical stimuli from the ECM and adapt their cytoskeleton structures. The cellular contraction, on the other hand, may induce dramatic structural changes to the local extracellular environment, particularly for the fibrous matrices. The main goal of this thesis is to understand the cell-ECM interaction and cell-cell interaction, which lays the foundation to address the role of mechanical stimuli in several physiological and pathological processes such as cell differentiation, wound healing and tumor metastasis. First, we employ the shear-lag model to quantitatively identify the key parameters affecting the size of focal adhesions, which physically link the cytoskeleton to the ECM and serve as the signal hubs. Next, by extending the SLM to three-dimensional and including the fibrous nature of ECM, we study the cell mechanosensing in non-linear ECMs. Furthermore, we focus on the whole-cell level and study nuclear morphology and stress during tumor cell transmigration. Notably, our model explains the driving force for tumor cell transmigration and shows potential treatment by preventing cancer cell extravasation. The nuclear morphology and stress predicted by the model lay the foundation to study the anticipated extent of DNA damage during transmigration. Finally, we study the gap formations due to the failure of cell-cell adhesions in endothelium and show that the adaptive cellular contraction plays a crucial role in preventing gap development and preserving the barrier function.
일반주제명Biophysics.
Computational physics.
Materials science.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼