대구한의대학교 향산도서관

상세정보

부가기능

Multiscale Modeling of Silicon Heterojunction Solar Cells

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Multiscale Modeling of Silicon Heterojunction Solar Cells.
개인저자Muralidharan, Pradyumna.
단체저자명Arizona State University. Electrical Engineering.
발행사항[S.l.]: Arizona State University., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항178 p.
기본자료 저록Dissertations Abstracts International 81-04B.
Dissertation Abstract International
ISBN9781088351215
학위논문주기Thesis (Ph.D.)--Arizona State University, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Advisor: Goodnick, Stephen M
이용제한사항This item must not be sold to any third party vendors.
요약Silicon photonic technology continues to dominate the solar industry driven by steady improvement in device and module efficiencies. Currently, the world record conversion efficiency (~26.6%) for single junction silicon solar cell technologies is held by silicon heterojunction (SHJ) solar cells based on hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si). These solar cells utilize the concept of carrier selective contacts to improve device efficiencies. A carrier selective contact is designed to optimize the collection of majority carriers while blocking the collection of minority carriers. In the case of SHJ cells, a thin intrinsic a-Si:H layer provides crucial passivation between doped a-Si:H and the c-Si absorber that is required to create a high efficiency cell. There has been much debate regarding the role of the intrinsic a-Si:H passivation layer on the transport of photogenerated carriers, and its role in optimizing device performance. In this work, a multiscale model is presented which utilizes different simulation methodologies to study interfacial transport across the intrinsic a-Si:H/c-Si heterointerface and through the a-Si:H passivation layer. In particular, an ensemble Monte Carlo simulator was developed to study high field behavior of photogenerated carriers at the intrinsic a-Si:H/c-Si heterointerface, a kinetic Monte Carlo program was used to study transport of photogenerated carriers across the intrinsic a-Si:H passivation layer, and a drift-diffusion model was developed to model the behavior in the quasi-neutral regions of the solar cell. This work reports de-coupled and self-consistent simulations to fully understand the role and effect of transport across the a-Si:H passivation layer in silicon heterojunction solar cells, and relates this to overall solar cell device performance.
일반주제명Electrical engineering.
Applied physics.
Computational physics.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼