대구한의대학교 향산도서관

상세정보

부가기능

Local Ion Velocity Measurements in the MST Saturated Single Helical Axis State

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Local Ion Velocity Measurements in the MST Saturated Single Helical Axis State.
개인저자Boguski, John .
단체저자명The University of Wisconsin - Madison. Physics.
발행사항[S.l.]: The University of Wisconsin - Madison., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항176 p.
기본자료 저록Dissertations Abstracts International 81-03B.
Dissertation Abstract International
ISBN9781085674249
학위논문주기Thesis (Ph.D.)--The University of Wisconsin - Madison, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-03, Section: B.
Advisor: Nornberg, Mark
이용제한사항This item must not be sold to any third party vendors.
요약The first local velocity measurements of helical equilibrium plasmas in the RFP are made to characterize the equilibrium flow profile. In high current, low density MST plasmas, the island associated with the innermost resonant tearing mode can grow and envelop the magnetic axis, resulting in a saturated Single Helical Axis (SHAx) equilibrium. The process by which this self-organized transition occurs is not fully understood. Theory and modeling suggest that viscous dissipation or large flow or magnetic shear might stimulate the transition. Local, toroidally resolved non-axisymmetric velocity measurements are obtained with a CHERS diagnostic while using a resonant magnetic perturbation to control the orientation of the helical plasma. The axisymmetric part of the flow is a rigid-rotor-like poloidal flow and relatively flat toroidal flow. Outside of the core, r/a > 0.5, the non-axisymmetric flow shows variations of order 10 km/s and more structure than a simple sinusoidal variation matching the helical variation of the magnetic axis. The toroidally resolved helical flow shear measured by CHERS may be comparable to strength of the critical shear necessary to mute nonlinear coupling of tearing modes. Flow measurements are compared with preliminary NIMROD simulations of visco-resistive, single-fluid MHD in toroidal and cylindrical geometry with full and limited axial periodicity. Both measurements and toroidal simulations show stronger inboard flows relative to the outboard. In the experiment, the n = 5 component of the poloidal flow is phase shifted by ~0.7 rad from the reconnection-like flow observed in the simulations, possibly due to decoupling of the ion and electron fluids over much of the plasma.
일반주제명Plasma physics.
Physics.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼