자료유형 | 단행본 |
---|---|
서명/저자사항 | Introduction to quantum algorithms via linear algebra/ Richard J. Lipton, Kenneth W. Regan. |
개인저자 | Lipton, Richard J.,author. Regan, Kenneth W.,author, |
판사항 | Second edition. |
발행사항 | Cambridge, Massachusetts: The MIT Press, [2021]. |
형태사항 | 1 online resource: illustrations. |
기타형태 저록 | Print version: Lipton, Richard J. Quantum algorithms via linear algebra. Introduction to quantum algorithms via linear algebra. Second edition. Cambridge, Massachusetts : The MIT Press, [2021]po 9780262045254 |
ISBN | 9780262362153 0262362155 |
서지주기 | Includes bibliographical references and index. |
내용주기 | Intro -- Title Page -- Copyright -- Dedication -- Table of Contents -- Preface to the First Edition -- Preface to the Second Edition -- Acknowledgments -- I. Essential Algorithms -- 1. Introduction -- 1.1. The Model -- 1.2. The Space and the States -- 1.3. The Operations -- 1.4. Where Is the Input? -- 1.5. What Exactly Is the Output? -- 1.6. Summary and Notes -- 2. Numbers and Strings -- 2.1. Asymptotic Notation -- 2.2. Problems -- 2.3. Selected Answers -- 2.4. Summary and Notes -- 3. Basic Linear Algebra -- 3.1. Hilbert Spaces -- 3.2. Products of Spaces and Tensor Products -- 3.3. Matrices 3.4. Complex Spaces and Inner Products -- 3.5. Tensor Products of Matrices -- 3.6. Matrices, Graphs, and Sums over Paths -- 3.7. Problems -- 3.8. Selected Answers -- 3.9. Summary and Notes -- 4. Boolean Functions, Quantum Bits, and Feasibility -- 4.1. Feasible Boolean Functions -- 4.2. An Example -- 4.3. Quantum Representation of Boolean Arguments -- 4.4. Quantum Feasibility -- 4.5. Examples of Quantum Circuits -- 4.6. Problems -- 4.7. Selected Answers -- 4.8. Summary and Notes -- 5. Special Matrices -- 5.1. Hadamard Matrices -- 5.2. Fourier Matrices 5.3. Reversible Computation and Permutation Matrices -- 5.4. Feasible Diagonal Matrices -- 5.5. Reflections -- 5.6. Problems -- 5.7. Selected Answers -- 5.8. Summary and Notes -- 6. Tricks -- 6.1. Start Vectors -- 6.2. Controlling and Copying Base States -- 6.3. The Copy-Uncompute Trick -- 6.4. Superposition Tricks -- 6.5. Flipping a Switch -- 6.6. Measurement Tricks -- 6.7. Partial Transforms -- 6.8. Problems -- 6.9. Selected Answers -- 6.10. Summary and Notes -- 7. Phil's Algorithm -- 7.1. The Algorithm -- 7.2. The Analysis -- 7.3. An Example -- 7.4. A Two-Qubit Example -- 7.5. Phil Measures Up 7.6. Quantum Mazes Versus Circuits Versus Matrices -- 7.7. Problems -- 7.8. Selected Answers -- 7.9. Summary and Notes -- 8. Deutsch's Algorithm -- 8.1. The Algorithm -- 8.2. The Analysis -- 8.3. Superdense Coding and Teleportation -- 8.4. Problems -- 8.5. Summary and Notes -- 9. The Deutsch-Jozsa Algorithm -- 9.1. The Algorithm -- 9.2. The Analysis -- 9.3. Problems -- 9.4. Summary and Notes -- 10. Simon's Algorithm -- 10.1. The Algorithm -- 10.2. The Analysis -- 10.3. Problems -- 10.4. Summary and Notes -- 11. Shor's Algorithm -- 11.1. Strategy -- 11.2. Good Numbers 11.3. The Quantum Part of the Algorithm -- 11.4. Analysis of the Quantum Part -- 11.5. Probability of a Good Number -- 11.6. Using a Good Number -- 11.7. Continued Fractions -- 11.8. Problems -- 11.9. Summary and Notes -- 12. Factoring Integers -- 12.1. Some Basic Number Theory -- 12.2. Periods Give the Order -- 12.3. Factoring -- 12.4. Problems -- 12.5. Summary and Notes -- 13. Grover's Algorithm -- 13.1. The Algorithm -- 13.2. The Analysis -- 13.3. The General Case, with k Unknown -- 13.4. Problems -- 13.5. Summary and Notes -- II. Advanced Algorithms -- 14. Physics of Quantum Computing |
요약 | "This text introduces undergraduates to quantum computation in terms of elementary linear algebra by emphasizing computation and algorithms rather than physics"-- |
해제 | Provided by publisher. |
통일서명 | Quantum algorithms via linear algebra |
일반주제명 | Quantum computers. Computer algorithms. Algebras, Linear. |
언어 | 영어 |
바로가기 |